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In a series of recent publications it has been shown
that there is an almost complete formal analogy in
the micromechanical relations describing the effective
shear viscosity of suspensions and the effective ten-
sile modulus of porous media [1–5]. In particular, the
Coble-Kingery approach [6] to describe the nonlinear
porosity dependence of the effective elastic moduli has
been recalled [1, 3] and, based on the corrected version
of the Coble-Kingery relation for the effective tensile
modulus [1], a new relation, the simplest with percola-
tion threshold (critical porosity), has been proposed for
the porosity dependence of the effective tensile modu-
lus [5]. We emphasize again, that the aforementioned
analogy originates from the possibly analogous mi-
crostructures or microstructural models of suspensions
and porous media, i.e., it concerns micromechanical re-
lations and is therefore of an entirely different charac-
ter than the well-known continuum mechanical analogy
between linear elasticity and linear viscosity [7].

In this paper we use the Coble-Kingery approach [6]
to derive a handy formula for the porosity dependence
of the effective thermal conductivity k. Probably the
earliest formula applicable to this property in compos-
ites of the matrix-inclusion type is the Maxwell approx-
imation of 1873 [7–9], which describes a model mate-
rial with spherical inclusions. For a two-phase material
it can be written in the form

kr = 1 − 2
3 [k] φ

1 + 1
3 [k] φ

, (1)

where

[k] = 3 · (k0 − k1)

2k0 + k1
(2)

can be called “intrinsic thermal conductivity” (see
below), with k0 being the thermal conductivity of the
matrix phase, k1 that of the inclusion phase, kr = k/k0
the relative (or “reduced”) thermal conductivity and
φ = φ1 the volume fraction of the inclusions. Note
that for a two-phase material the volume fractions of
the constituent phases must sum up to unity, i.e., the
volume fraction of the matrix phase is complemen-
tary to φ, i.e., φ0 = 1 − φ. Definition (2) has been
chosen with regard to the fact that in the dilute limit
(φ → 0) Equation 1 can be approximated by the linear
expression (neglecting terms of higher order in φ)

kr = 1 − [k] φ, (3)

which is the conductivity counterpart of the Jeffery–
Einstein relation [10, 11] in suspension rheology

ηr = 1 + [η] φS, (4)

(with shear viscosity η and solids volume fraction φS)
and can be viewed as being in complete analogy to
the Dewey-Mackenzie-Christensen relations [12–14]
in elasticity context

Mr = 1 − [M] φ, (5)

(with M being the shear, bulk, or tensile modulus,
respectively and [M] being a function of the Poisson
ratio of the matrix phase). In all these linear dilute
approximations, Equations 3 through 5, the quantities
in square brackets denote “intrinsic” properties, gen-
eralizing to the widely used term “intrinsic viscosity”
in the context of suspension rheology [15]. Note that
here the definitions of the intrinsic properties [k], [η],
and [M] have been chosen in such a way to make their
values positive, i.e.,

[η] ≡ lim
φ→0

ηr − 1

φ
(6a)

for the intrinsic viscosity, but

[M] ≡ − lim
φ→0

Mr − 1

φ
. (6b)

and

[k] ≡ − lim
φ→0

kr − 1

φ
(6c)

for the intrinsic conductivity and intrinsic elastic mod-
uli, respectively, in contrast to [1–5]. These new def-
initions are more convenient (since otherwise all [k]
and [M] values would be negative) and emphasize the
intuitive notion of a decreasing property value with in-
creasing porosity.

The intrinsic properties are generally (albeit possi-
bly non-unique) functions of inclusion shape, e.g., the
aspect ratio of spheroidal particles in suspension rheol-
ogy. For spherical inclusions exhibiting certain extreme
properties (rigid particles in the case of suspensions,
voids with zero property value in the case of porous ma-
terials) they adopt the values [η] = 2.5 (Einstein value
[10]), [M] = 2 (only in the peculiar case of a matrix
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Poisson ratio value of 0.2, cf. [9, 16, 17]) and [k] = 1.5
(see below).

It is well known that, accidentally, the Maxwell ap-
proximation, Equation 1, is equivalent to one of the
Hashin-Shtrikman bounds [7, 9], which have been de-
rived on the basis of variational principles [18] for
a coated-spheres model [19] (also called compos-
ite spheres model [20], polydisperse model [21], or
“Hashin assemblage” model [9]) and can be written
as follows:

k−
HS ≤ kr ≤ k+

HS. (7)

In this expression

k−
HS = k̄

k0
− φ (1 − φ) (k0 − k1)2

k0 (3k1 + φ (k0 − k1))
(8a)

and

k+
HS = k̄

k0
− φ (1 − φ) (k0 − k1)2

k0 (3k0 − (1 − φ) (k0 − k1))
, (8b)

with indices 0 and 1 referring to the matrix and the
inclusion phase, respectively. It can easily be shown that
in the case of porous materials (k0 � k1), Equation 1 is
equivalent to the upper Hashin-Shtrikman bound given
by Equation 8b, i.e., kr = k+

HS.
Another equivalent formulation of the Maxwell ap-

proximation, Equation 1, is due to Christensen [20],
who derived it via his three phase model:

kr = 1 +
(

1 − φ

3
+ k0

k1 − k0

)−1

· φ. (9)

We note that this relation, in either of the alternative for-
mulations (1), (8b), or (9), has been rederived by Kerner
in 1956 in the context of electrical conductivity [20–22].
However, in thermal conductivity context it has been
derived by Eucken as early as 1932 [23, 24]. Indeed, it
can be used for all scalar coefficients in linear consti-
tutive equations of the same type (Torquato’s “class A”
steady-state effective media problems [7]), i.e., apart
from thermal conductivity [23, 24] e.g., for electri-
cal conductivity (in this context also called “Maxwell-
Garnett approximation” [8, 22, 25]), magnetic perme-
ability [18], dielectric constant (in this context called
“Clausius-Mossotti formula” [26]), and refractive in-
dex (in this context called “Lorenz-Lorentz formula”
[26]), cf. [7, 9, 20].

While the Maxwell approximation is based on an ef-
fective field concept (single inclusion embedded in a
matrix phase, presence of the remaining inclusions ac-
counted for by imposing an external mean field different
from the one applied macroscopically), the so-called
self-consistent approximation rests on an effective
medium concept and treats the inclusions as embedded
in a homogeneous medium of unknown effective prop-
erties [7, 9]. According to the self-consistent approx-
imation [25, 27, 28], the relative thermal conductivity

of a two-phase material is given by the expression (7)

kr = C +
√

C2 + 8k0k1

4k0
, (10)

where the parameter C is defined as

C ≡ (2 − 3φ) k0 + (3φ − 1) k1. (11)

As mentioned before, in the case of empty (vacuous) or
air-filled voids (phase 1) the thermal conductivity of the
inclusion phase k1 (pores) can be neglected in compari-
son with that of the matrix phase (phase 0), i.e., k1 � k0.
In this case the intrinsic conductivity calculated accord-
ing to Equation 2 is [k] = 3/2 and thus the relative
conductivity calculated according to the linear approx-
imation, Equation 3, valid in the dilute limit (φ → 0), is

kr = 1 − 3

2
φ, (12)

which corresponds to the prediction of the self-
consistent approximation, Equation 10, for this case.
Note that both the linear approximation (3) and the
self-consistent approximation (12) predict for this
case a percolation threshold (i.e., a critical porosity
at which the conductivity becomes zero) at approx.
67 vol%, in contrast to the Maxwell approximation,
which is nonlinear and admits the possibility of finite
thermal conducitivities up to porosities close to 100%,
cf. Fig. 1. Without doubt, the latter possibility must
be taken into account for closed-pore cellular solids
(foams) or open-pore network structures [29].

Now we adopt the Coble-Kingery approach [6] to
derive a simple formula which can account for non-
linear porosity dependences of the effective thermal
conductivity and allows the occurrence of finite con-
ductivities up to very high porosities. Therefore we set

kr = 1 − 3

2
φ + A φ2 (13)

Figure 1 Prediction of the relative conductivity of porous materials ac-
cording to the Maxwell model or Hashin-Shtrikman upper bound (dot-
ted), the self-consistent (SC) approximation (dashed), and our relation
(full line); the conductivity of the void phase is assumed to be negligibly
small.
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and determine the value of the second-order coefficient
A from the plausible condition that kr = 0 when
φ = 1. Obviously A = 0.5 and thus the new relation
can be written in the form

kr = 1 − 3

2
φ + 1

2
φ2. (14)

This handy expression is probably the simplest non-
linear relation which might serve for rough estimates
and prediction purposes. The kr values it predicts are
all slightly lower than those predicted via the Maxwell
approximation, Equations 1 or 9, which in the present
case of pores (k1 � k0) attains the form

kr = 1 − 3 φ

2 + φ
= 1 −

(
3

2
− 3

4
φ + 3

8
φ2

+ · · · + (−1)n+1 · 3

2n
· φn−1

)
· φ, (15)

which always yields higher values than Equation 14,
cf. Fig. 1. Evidently, this is reasonable from the
theoretical point of view, because the Maxwell approx-
imation embodies the upper Hashin-Shtrikman bound,
Equation 8b. Interestingly, the maximum deviation
(approx. 10% lower value) of the prediction via
Equation 14 compared to the prediction via Equation
15 occurs at a porosity of 64 vol%. We also note
that our second-order expression (14) comes to lie
between the second-order approximation of the cluster
expansion performed by Jeffrey [30] for impenetrable
insulating spheres,

kr = 1 − 3

2
φ + 0.588 φ2 (16)

and the second-order approximation of the cluster
expansion performed by Torquato [31] for fully
penetrable insulating spheres,

kr = 1 − 3

2
φ + 0.345 φ2. (17)
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16. R . W. Z I M M E R M A N N , Mech. Mater. 12 (1991) 17.
17. Idem., Appl. Mech. Rev. ASME 47 (1994) S38.
18. Z . H A S H I N and S . S H T R I K M A N , J. Appl. Phys. 33 (1962)

3125.
19. Z . H A S H I N , ASME J. Appl. Mech. 29 (1962) 143.
20. R . M. C H R I S T E N S E N , in “Mechanics of Composite Materials”

(Wiley, New York, 1979) p. 47, 316.
21. A . A . B E R L I N, S . A . V O L F S O N, N. S . E N I K O L O P I A N

and S . S . N E G M A T O V , in “Principles of Polymer Composites”
(Akademie-Verlag, Berlin, 1986) p. 55.

22. E . H . K E R N E R , Proc. Phys. Soc. B 59 (1956) 802.
23. A . E U C K E N , Ceram. Abstr. 11 (1932) 576.
24. Idem., ibid. 12 (1933) 231.
25. R . L A N D A U E R , in “Electrical, Transport and Optical Properties

of Inhomogeneous Media,” edited by J. C. Garland and D. B. Tanner
(American Institute of Physics, New York, 1978) p. 2.

26. R . P . F E Y N M A N, R. B . L E I G H T O N and M. S A N D S , in
“The Feynman Lectures on Physics” (Addison-Wesley, Reading,
1964).

27. D . A . G. B R U G G E M A N , Ann. Physik (Leipzig) 24 (1935) 636.
28. R . L A N D A U E R , J. Appl. Phys. 23 (1952) 784.
29. L . J . G I B S O N and M. F . A S H B Y , in “Cellular Solids—

Structure and Properties,” 2nd ed. (Cambridge University Press,
Cambridge, 1997).

30. D . J . J E F F R E Y , Proc. R. Soc. Lond. A 335 (1973) 355.
31. S . T O R Q U A T O , J. Chem. Phys. 83 (1985) 4776.

Received 21 July
and accepted 14 October 2004

2669


